
LHCb DIRAC
Containers

Andrew McNab, on behalf of the LHCb Collaboration

LHCb, GridPP,
University of Manchester

L’ile des castors, Parc de la Fessine, Lyon, May 2018

Outline
● DIRAC is the workload + data management system used by LHCb
● The aim of the DIRAC containers are to provide black boxes in

which DIRAC jobs can run
● Similar idea to the DIRAC VMs

● Some experience with LHCb containers for Yandex Skygrid

● We have now created Docker-based containers that adhere to the
Vacuum Containers (VC) interface now provided by Vac

● VC interface defines how hosts provide things like Machine/
Job Features and /cvmfs to containers in a generic way

● It will be possible to create similar containers for other workload
management frameworks than DIRAC (eg HTCondor)

● We use CernVM-FS to provide the operating system files as well
as the experiment code

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !2

Container components
● To create a container following this pattern you need:

● An image

● A contextualisation script (“user_data”)

● Access to CernVM-FS
● Extra parameters like min/max lifetime, number of

processors, accounting VO name/fqan
● All of this is described in the lhbc.pipe “Vacuum Pipe” JSON file

on the LHCb DIRAC webserver, fetched and parsed by the
container factory at the site

● Vacuum Pipes can contain definitions of multiple container (and/
or VM) versions / flavours

● Container factories can use them programmatically, reducing
the site configuration for a VO to a couple of lines

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !3

Docker images
● Generic Docker images we use just bootstrap the containers

rather than contain all the code

● They are a simplified version of Docker images produced by
the CernVM project

● Published in Docker Hub (vacproject/vcbusybox)
● The image consists of:

● busybox, a self-contained shell+commands binary
● a script (“/init”) which sets up the root filesystem and then

runs /user_data

● The root filesystem is mostly populated with symbolic links
to /cvmfs/cernvm-prod.cern.ch/cvm3

● Some files are copied, so they can be modified (eg /etc) or be
set setuid to root (eg sudo)

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !4

LHCb DC user_data file

● The container factories fetch user_data_dc_prod template from
the LHCb DIRAC webserver

● Some patterns in the file are substituted by the factory

● eg ##user_data_space## is the space (“CE”) name at the site

● The preprocessed user_data file given to the container with a
bind mount

● It consists of a script which converts the generic SL6-like
container into an LHCb DIRAC execution node

● Its main tasks are:
● Set up the X.509 credentials needed to talk to DIRAC services
● Create the unix accounts within the container to isolate users

● Download and run the LHCb DIRAC pilot code

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !5

Container structure and user isolation
● Uses unix accounts

and sudo to isolate
root vs pilot vs
payloads

● Requires account
creation per
payload

● If multiple
consecutive
payloads per slot,
they each get an
account

● This is the similar
to the LHCb DIRAC
VMs

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia

user_data script

Gets pilot

User root

User plt

dirac-pilot

Launch command

sudo

SudoCE

 6

User plt02p03

User plt01p00

User plt00p01
(payload 1 of slot 0)

Payload job scripts

Volumes bind-mounted in the container
● /cvmfs (ro)
● /user_data (ro)
● /scratch (rw)

● The host may provide a large, fast volume so the container
can avoid using the copy-on-write filesystem as work space

● /etc/machinefeatures (ro)
● /etc/jobfeatures (ro)

● Machine/Job Features are used by the DIRAC pilot to
discover the maximum container lifetime, local UUID, and
to receive early stop instructions via shutdowntime

● /etc/joboutputs (rw)
● Log files and shutdown_message explaining why it finished

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !7

Singularity
● We also did some proof of concept with Singularity containers

● Same idea but no isolation between payloads and pilot
● Validated with Monte Carlo production jobs
● It would be possible to run LHCb production jobs this way if

a site only provided the ability to run “black box”
Singularity containers

● Singularity is also an attractive alternative to Sudo within the
containers
● This needs tested and supported “SingularityCE” in DIRAC
● Will also be used for DIRAC jobs running on grid/batch
● Containers will replace Sudo once this is ready for

production use

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !8

LHCb containers running alongside VMs

LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !9

● The chart shows
LHCb Docker
containers (lhcb-dc-
prod) in dark grey
before and after a
software update

● LHCb VMs (lhcb-vm-
prod) are shown in
pink and are running
on the same Vac
VM/Container
factories

Summary and next steps
● Now added LHCb DIRAC Docker containers in addition to the

VMs we’ve used for several years
● Again use Sudo to achieve excellent isolation between user

jobs and pilot code
● Use CernVM-FS to provide the root filesystem as with VMs

● So again we immediately benefit from operating system
security updates etc from CernVM group

● Will provide CentOS7-based containers (cvm4) when needed
● Intend to migrate from Sudo to Singularity for isolation when

tested and supported in DIRAC
● This pattern can be used by other workload frameworks
● And could be run as black boxes by other Docker container

factories (eg Kubernetes)
LHCb DIRAC Containers - Andrew.McNab@cern.ch - CHEP2018, July 2018, Sofia !10

